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Figure 1. St4RTrack: Given an RGB video capturing dynamic scenes, St4RTrack simultaneously tracks the points from the initial frame
(visualized in purple) and reconstructs the geometry of the subsequent frames (in orange) in a consistent world coordinate frame. St4RTrack
is a feed-forward framework that takes a pair of images as input and outputs two pointmaps in the world frame, as the visualization shown
in the middle. By iteratively processing the first frame paired with each subsequent frame, St4RTrack achieves simultaneous tracking (right
bottom) and reconstruction (right top) for the entire video. Interactive results on our webpage: https://St4RTrack.github.io/.

Abstract

Dynamic 3D reconstruction and point tracking in videos
are typically treated as separate tasks, despite their deep
connection. We propose St4RTrack, a feed-forward frame-
work that simultaneously reconstructs and tracks dynamic
video content in a world coordinate frame from RGB in-
puts. This is achieved by predicting two appropriately de-
fined pointmaps for a pair of frames captured at different
moments. Specifically, we predict both pointmaps at the
same moment, in the same world, capturing both static and
dynamic scene geometry while maintaining 3D correspon-
dences. Chaining these predictions through the video se-
quence with respect to a reference frame naturally computes
long-range correspondences, effectively combining 3D re-
construction with 3D tracking. Unlike prior methods that
rely heavily on 4D ground truth supervision, we employ a
novel adaptation scheme based on a reprojection loss. We
establish a new extensive benchmark for world-frame re-
construction and tracking, demonstrating the effectiveness
and efficiency of our unified, data-driven framework. Our
code, model, and benchmark will be released.

∗Equal contribution, listed alphabetically.

1. Introduction

When asked about the three most important problems in
computer vision, Takeo Kanade replied, “Correspondence,
Correspondence, Correspondence!” This remark is espe-
cially pertinent to multi-view 3D reconstruction, where 3D
geometry and 2D correspondence are two sides of the same
coin; that is, a 3D point in the physical world naturally
brings 2D correspondence across its projections in different
views, and conversely, corresponded 2D points across views
reconstruct the same 3D point after triangulation. This syn-
ergy between 3D geometry and 2D correspondence has long
formed the foundation of multi-view geometry [17]. How-
ever, when the scene becomes dynamic, this synergy ap-
pears to vanish, as existing methods—particularly the re-
cent data-driven ones—tend to treat dynamic reconstruc-
tion [22, 58, 67] and correspondence [24, 38, 51] as sep-
arate, disconnected tasks. We argue that this is a missed
opportunity; the synergy between 3D reconstruction and
2D correspondence is not lost in dynamic scenes—it sim-
ply requires an additional element: understanding how the
scene content evolves over time. This evolution is captured
by 3D motion estimation (i.e., dense 3D point tracking),
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which, when computed across a sequence, effectively ex-
plains scene motion. Once tracking accounts for scene dy-
namics, the problem effectively reduces to the rigid case,
where the natural interplay between reconstruction and cor-
respondence can once again be leveraged.

We propose St4RTrack, a learning framework that uni-
fies reconstruction and tracking directly from RGB video
frames. St4RTrack simultaneously reconstructs and tracks
dynamic video content in a single consistent world, achiev-
ing world-frame 3D tracking, as demonstrated in Fig. 1.
Tracking in the world frame decouples the scene and the
camera motion, essential for domains where both the cam-
era and content are in motion. Our approach also recon-
structs the 3D geometry of observed image content for both
static and dynamic portions of the scene. St4RTrack di-
rectly predicts their reconstruction and tracking in the world
without requiring an additional alignment stage.

Our key insight stems from the observation that a feed-
forward static 3D reconstruction method, DUSt3R [61],
can be adapted to dynamic scenes simply by changing the
pointmaps’ annotation [67]. Building on this, we reexamine
the pointmaps definition in the 4D scenario and opt to sim-
ply redefine its geometric interpretation for both reconstruc-
tion and tracking, as illustrated in Fig. 2. Concretely, we
achieve it by predicting two pointmaps at the same times-
tamp and in the same world from a pair of image frames
depicting two different timestamps. More specific, given
images (Ii, Ij), both pointmaps are predicted in the coordi-
nate frame of Ii, but at the time specified by Ij . Our method
is realized through a feed-forward network comprising of
two branches: the reconstruction branch reconstructs the
content of Ij in the Ii coordinate frame; and the tracking
branch, which reconstructs the content of Ii in the Ii (its
own) coordinate frame, but at the time indicated by Ij . Es-
sentially, the tracking branch predicts how the scene content
in Ii evolves to match the moment captured in Ij . This is
enabled through a DUSt3R-like dual cross-attention mecha-
nism, where the tracking branch relies on the reconstruction
branch to decide how to move points. This minimal change
proves sufficient for unifying both dynamic reconstruction
and 3D point tracking in the world coordinate system.

Furthermore, unlike existing methods [58, 61, 67] that
rely solely on 4D supervision, our approach unlocks 4D
reconstruction training on in-the-wild videos via reprojec-
tion loss without 4D supervision. This is possible because
St4RTrack simultaneously establishes camera parameters,
3D geometry and motion. Specifically, based on the out-
puts of the reconstruction branch, the camera parameters
for Ij can be differentiably computed via PnP. Using these
cameras, the pointmap of Ii is projected into the j-th frame,
enabling training with a reprojection loss that leverages 2D
correspondences and monocular depth predictions from off-
the-shelf approaches [23, 59]. Consequently, the monocu-

lar supervisions facilitate effective test-time adaptation of
St4RTrack to in-the-wild videos, which can differ substan-
tially from the synthetic data used during pretraining.

While prior 3D point tracking benchmarks focus on cam-
era coordinate frames [64], our approach enables world-
frame 3D tracking. To evaluate this capability, we estab-
lish a novel benchmark, WorldTrack, for both tracking and
reconstruction in the world coordinate system. We find
that our unified method outperforms the strong baselines
that combine several pieces on each individual task. Fur-
thermore, we show that our feedforward results can be im-
proved via test-time adaptation. We believe this is a step
towards a unified task-agnostic 4D perception system that
can be trained on a large-scale video. Our code, model, and
benchmark will be released.

2. Related Works

Camera Estimation and Scene Reconstruction. Jointly
estimating camera motion and scene geometry has been
studied for decades, often in the context of Structure from
Motion (SfM) [1, 47, 48, 56] or Simultaneous Localiza-
tion and Mapping (SLAM) [7, 10, 37, 52, 60]. However,
these methods are primarily designed for static scenes and
typically do not model dynamic scene content. Recent ad-
vances in learning-based monocular and video depth esti-
mation methods [2, 42, 44, 65] have opened new opportuni-
ties to reconstruct dynamic scenes. Notably, R-CVD [25],
CasualSAM [68] and MegaSAM [33] jointly optimize cam-
era parameters and per-frame dense depth maps leveraging
monocular depth priors, producing consistent depth esti-
mates for dynamic objects and accurate camera parameters
even in challenging cases with minimal camera parallax.
Another notable recent method, DUSt3R [61], introduces
a two-pointmap representation that enables joint estimation
of camera motion and scene geometry of a pair of images.
While DUSt3R itself primarily focuses on reconstructing
static scenes, follow-up effort such as MonST3R [67],
demonstrate that this formulation can also effectively han-
dle dynamic scenes with minimal modification on supervi-
sions. Despite these advances, none of the aforementioned
methods explicitly estimate 3D scene motion, meaning they
do not track the movement of individual 3D points over
time. In contrast, our method simultaneously performs joint
reconstruction and tracking for dynamic scenes.

2D/3D Point Tracking. Tracking pixel motion over time is
a fundamental problem in computer vision. Optical/Scene
flow methods [3, 18, 19, 35, 50, 51, 53, 55] produce dense
2D/3D motion vectors but are inherently short-ranged,
struggling with large displacements and occlusions. While
long-range point tracking [45, 46] has been studied for
decades, it has recently been revitalized via supervised
learning [8, 9, 16, 23, 24], enabling more robust tracking
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Figure 2. Pointmap Comparison of MonST3R and St4RTrack.
Given two input frames, MonST3R handles dynamic scenes by
reconstructing both pointmaps in their own timestamp. St4RTrack
predicts where the points in the first frame move in the second
frame, and reconstructs the geometry of the second frame. More
details of the representation definition are introduced in Sec. 3.1.

over extended time periods and overcoming these limita-
tions. However, these methods still produce only 2D pixel
trajectories. More recently, several works [38, 64] achieve
3D tracking by lifting points into 3D space using monoc-
ular depth priors and performing tracking in 3D. While
closely related to our approach, these methods still oper-
ate in the camera frame space, meaning they lack camera
motion estimation and do not explicitly separate scene mo-
tion from camera motion. In contrast, our method jointly
estimates disentangled camera and scene motion, enabling
world-space tracking for a more complete understanding of
3D scene dynamics.

Joint Dynamic Reconstruction and Tracking. While tra-
ditional non-rigid SfMs have studied joint tracking and re-
construction [4, 6, 12, 39, 70] from 2D correspondences,
jointly optimizing them from raw videos is highly challeng-
ing and typically requires multi-view synchronized videos
as input [13, 30, 36, 41, 63]. With recent advances in
neural rendering and data-driven geometric priors, recon-
structing and rendering dynamic scenes from monocular
videos became possible. However, as Gao et al. [14] point
out, many methods [43, 66] focus on “teleporting” input
data, which are effectively multi-view and not representa-
tive of real-world videos. In addition, since the main fo-
cus is view synthesis, motion estimation serves a secondary
role in facilitating information fusion between neighboring
frames [31, 32]. More recently, several works [27, 34, 57]
focus on jointly recovering camera parameters, persistent
scene geometry, and long-range 3D tracks from single,
causally captured videos. However, these methods take
off-the-shelf priors as given and design per-video optimiza-
tion techniques that optimize a representation from scratch.
Most recently, Stereo4D [20]—a concurrent effort to our
work—proposed a pipeline for crafting a real-world 4D
tracking dataset using internet stereo videos, enabling the
supervised regression of 3D trajectories and geometries be-

tween frames. In contrast, we propose a feed-forward
method that simultaneously performs reconstruction and
tracking, while the same architecture also supports test-time
adaptation on unlabeled videos to approach the high quality
of optimization-based methods.

3. Simultaneous Reconstruction and Tracking

We present a framework that simultaneously reconstructs
and tracks dynamic video content in 3D within a single con-
sistent world coordinate frame. The core idea is simple yet
powerful: reconstructing and tracking can both be achieved
by predicting two appropriately defined pointmaps, where
both pointmaps reconstruct the scene content observed in
each image at the same timestamp in a consistent coordi-
nate system. This enables simultaneous reconstruction of
both dynamic and static contents, while tracking across a
sequence of image frames in a video. Since all geome-
try, camera, and motion (i.e. 3D correspondence over time)
can be derived from the representation, it can be adapted
to videos without any explicit 4D supervision. Below, we
discuss the main insight, how St4RTrack compares to prior
works. Then, we discuss the details of the model and how
it can be trained and adapted to videos.

3.1. Unified 4D Representation of St4RTrack
Given two images Ii, Ij with dynamic content (see Fig-
ure 2), how can one devise a single feedforward approach
that simultaneously performs reconstruction and tracking?
We argue that the underlying representation must (1) cap-
ture camera motion to establish a world coordinate frame,
(2) reconstruct the 3D geometry of all observed points, and
(3) estimate 3D motion that maintain explicit correspon-
dence over time. In this work, we show that just two prop-
erly defined pointmaps suffice to fulfill these requirements.

Time-Dependent Pointmap. A pointmap representation
assumes that each pixel in an image I of shape H ×W
is associated with a corresponding 3D point, forming a
pointmap X ∈ RH×W×3. For the case of static scenes,
DUSt3R [61] only considers two factors of pointmaps—(1)
the source frame of the content and (2) the camera coordi-
nate system in which the points are expressed. However,
this definition is insufficient for modeling the dynamic sce-
nario of monocular video. To address this, we introduce a
previously overlooked yet decisive factor: time.

Specifically, we define a time-dependent pointmap that
encodes the 3D positions of the scene points in a chosen
(world) coordinate system at a specific timestamp. For clar-
ity, we denote this representation as aXb

t , which denotes the
3D pointmap of physical content from frame b, at time t,
expressed in the coordinate system established by frame a.”
For example, iXi

j represents the geometry originally seen in
frame i in frame i’s own coordinate system, but described at
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Figure 3. Overview of St4RTrack. Given frame 1 and frame j as input, the tracking branch outputs 1X1
j , the pointmap that corresponds

to observed content of the first frame at timestep j in its own camera coordinate (i.e. world coordinate); the reconstruction branch outputs
1Xj

j , the pointmap of the content in frame j at its own timestamp in the world coordinate. To adapt to new videos without any 4D labels, the
camera is computed via differentiable PnP from the pointmap, enabling reprojected supervision signals (e.g., 2D trajectories and monocular
depth). We finetune both branches during training (Sec. 3.2) with synthetic data, and when adapting to a new video (Sec. 3.3), only the
tracking branch is fine-tuned using these reprojected supervision signals.

timestamp j. The time-dependency is achieved by construc-
tion without explicit timestamp conditioning, as described
in the next section.

Unified 4D Modeling. St4RTrack learns a function f that
maps two images Ii, Ij , captured at timestamp i and j, into
two pointmaps:

fθ(Ii, Ij) =
iXi

j ,
iXj

j . (1)

The second image Ij is reconstructed as the pointmap iXj
j

in the first image Ii’s coordinate frame. Meanwhile, it pre-
dicts iXi

j , representing the 3D motion of how the content
from the first image Ii moves at timestamp j. Thus, both
geometry and motion (tracking) are estimated from this uni-
fied prediction.

To handle a full video consisting of T frames, we
perform tracking and reconstruction by always selecting
the first frame as the anchor frame Ii. Each subse-
quent frame Ij is then paired with this initial frame, en-
suring that every new frame is consistently aligned to
the coordinate system of the first frame. Specifically,
{f(I1, I1), f(I1, I2), . . . , f(I1, IT )} are computed in the
same reference, I1, which naturally serves as the world co-
ordinate frame. Thus, world-frame 3D tracking is achieved
by explicitly following how points observed in I1 are
placed throughout the sequence, {1X1

1,
1X1

2, . . . ,
1X1

T },
while the world frame dynamic reconstruction is ob-
tained by the paired geometry estimation per-frame,
{1X1

1,
1X2

2, . . . ,
1XT

T }.

Relation to prior works. Our formulation of the 4D mod-

eling generalizes prior works in a unified framework.
DUSt3R reconstructs and establishes correspondences but
is limited to rigid scenes, as correspondence and recon-
struction are dual tasks for static scenes. With this perspec-
tive, one can see that if there is no dynamic component (i.e.
frozen moment in time or rigid scenes), our formulation is
equivalent to DUSt3R, where both images share the same
timestamp t = i:

fθ(Ii, Ij) =
iXi

i,
iXj

i . (2)

In a static world, 3D reconstruction from two pointmaps
inherently yields the correspondences between them, allow-
ing synergy to arise naturally. However, when objects or the
scene are in motion, the dynamic component appears dif-
ferently in different frames, it becomes crucial to account
for 3D scene motion to preserve this synergy. St4RTrack
addresses this challenge by predicting the 3D content from
the first image at future timestamps.

In the same framework, we see that MonST3R, the dy-
namic follow-up of DUSt3R can be expressed as such:

fθ(Ii, Ij) =
iXi

i,
iXj

j , (3)

where each image’s 3D geometry is reconstructed in its
timestamp, such that the dynamic contents separately align
with their frame inputs. While it’s sufficient for obtaining
dynamic scene geometry, there is no temporal correspon-
dence being established, as illustrated in Fig. 2. Further-
more, both DUSt3R and MonST3R compute the pairwise
graphs and perform global alignment.
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Since we always designate the first frame as the refer-
ence for tracking, the world coordinates are consistently es-
tablished by the first frame. For simplicity, we omit the ex-
plicit notation of the world coordinate in subsequent equa-
tions and paragraphs, i.e., Xi

j :=
iXi

j .

3.2. Joint Learning of Tracking and Reconstruction
In this section, we describe how our framework implements
equation 1 within a pair-wise framework as DUSt3R. For
each pair of frames, I1 and Ij , we first encode them into
token representations using a ViT encoder, then process
these tokens through a siamese transformer decoder. The
decoder sequentially applies self-attention (allowing tokens
within each frame to interact), followed by cross-attention
(enabling tokens from one frame to attend to tokens in the
other), and finally passes the tokens through an MLP. This
continuous information flow between the two branches is
crucial for generating spatial-aligned 3D pointmaps in a
shared coordinate system, as illustrated in Fig. 3.

Our siamese architecture processes two input views con-
currently and generates two 3D pointmaps that are ex-
pressed in a common reference frame established by the
first view. Although the two branches share the same ar-
chitectural structure, they serve distinct purposes:
• Tracking branch predicts the pointmap X1

j , which rep-
resents the geometry of the first frame at timestamp j in
the first frame’s coordinates (i.e., the world coordinates).

• Reconstruction branch predicts the pointmap Xj
j , which

represents the geometry of frame j at its own timestamp,
also expressed in the first frame’s camera coordinates.

Since this architecture is exactly the same as proposed by
DUSt3R and subsequently adopted by MonST3R, with the
only difference being the output paired pointmaps (Eq.1-3),
our network can be initialized with pretrained 3D knowl-
edge from either DUSt3R or MonST3R.

Pretraining with 4D Synthetic Data. Our proposed repre-
sentation requires specialized supervision for the Tracking
Branch—namely, ensuring that the pointmap from the first
frame is correctly positioned in the world across all frames.
Achieving this necessitates complete 4D information of the
dynamic scene. Therefore, we leverage existing 4D syn-
thetic datasets [22, 69] that provide both the 3D geometry
and motion of the rendered content. Specifically, for each
dataset, we use the scene mesh vertices (expressed in world
coordinates) to provide sparse, masked supervision for the
Tracking Branch pointmap representation, and employ per-
frame depth maps and camera ground-truth to supervise
the Reconstruction Branch. For this fully supervised train-
ing process, we use the objectives from DUSt3R. We
initialize our dual-branch transformer with weights from
MASt3R [29], a DUSt3R variant that has been adapted for
2D correspondence learning. Additional details regarding
the 4D synthetic datasets are provided in Sec. 4.1.

3.3. Adapt to Any Video without 4D Label
While the synthetic datasets are small-scale and unrealistic,
they are sufficient for our network to learn the newly pro-
posed representations. However, fully supervised training
on these datasets presents two key limitations: 1) The 4D
synthetic data is limited in scale and does not encompass the
full range of motion and geometry present in real-world dy-
namic scenes; 2) Our proposed pointmap representation re-
quires the capability to freely move the pointmap within the
world coordinates—a departure from conventional pixel-
aligned geometry predictions, making small-scale training
insufficient for achieving fine-grained predictions. These
limitations motivate us to further leverage the 3D geometry
and motion inherent in the St4RTrack framework to perform
domain adaptation on any video without 4D labels. Specif-
ically, we first show how we can derive camera parameters
differentially, and with which we can design reprojected 2D
trajectory loss and monocular depth loss to supervise the
network.

Solving Camera Parameters. The intrinsic matrix K is
first estimated from the tracking branch’s first-frame
pointmap prediction, following DUSt3R [61]. In this pro-
cess, the principal point is assumed to be centered, and pix-
els are treated as square. The focal length is assumed static
across frames and estimated using a fast iterative solver
based on the Weiszfeld algorithm [62]. Next, the extrin-
sic parameters Pj = [Rj |Tj ] for each frame j are derived
using the “reconstruction” pointmap Xj

j . Specifically, each
pixel xj,n in frame j is associated with a 3D coordinate
Xj,n

j in the shared world coordinate system (established by
the first camera), thus forming 2D-to-3D correspondences.
We could then solve for Rj and Tj via a Perspective-n-
Points (PnP) [28] solver with RANSAC [11] for outlier re-
jection:

Rj ,Tj = argmin
R,T

∑
n∈Ij

∥∥∥xj,n − π
(
K (RXj,n

j +T)
)∥∥∥2,

(4)
where π(·) is the projection (x, y, z) → (x/z, y/z).

For differentiability, we adopt a derivative-based Gauss-
Newton solver following [5], ensuring that gradients from
the reprojection loss can adjust both the camera pose and the
3D pointmaps. Further details are provided in Appendix A.

Reprojection Loss. With the camera pose of frame j
derived, the tracking pointmap X1

j and reconstruction
pointmap Xj

j can be transformed from the world coordi-
nate system into the camera coordinate system of frame
j. This transformation enables self-supervised training by
enforcing two types of consistency: (1) 2D correspon-
dence consistency, which aligns the projected 2D tracks
(from X1

j ) with the pseudo-ground truth tracking from Co-
Tracker [23, 24], and (2) geometric consistency, which
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aligns the scale-invariant depth (from Xj
j) with the pseudo-

ground truth monocular depth from MoGe [59].
More specifically, given the estimated camera pose

(Rj ,Tj) from frame j and the tracking pointmap X1
j , we

reproject these 3D points into the image plane of frame j:

x̂j,n = π
(
K
(
Rj X1,n

j +Tj
))
. (5)

These reprojected points serve as the predicted 2D tracks
and are compared with the pseudo-ground truth tracking
points xj,n

trk from CoTracker3 [23].
To mitigate minor focal inaccuracies that may induce

scaling shifts, the reprojection loss is computed in a scale-
invariant manner. Let pn = x̂j,n and gn = xj,n

trk for
n = 1, . . . , N , and denote the image center by c. The scale
factor and adjusted predictions are computed together as:

p̂n = (pn − c) s+ c, s =
1

N

N∑
n=1

∥gn − c∥2
∥pn − c∥2

. (6)

Then, the scale-invariant 2D reprojection loss is defined as

Ltraj =
1

N

∑
n∈Ij

∥p̂n − gn∥2. (7)

Similarly, to enforce geometric consistency with the
mono-depth predictions from MoGe [59], we use the recon-
struction pointmap Xj

j that transformed to frame j’s camera
coordinate. The depth of each transformed 3D point is

zj,nproj =
(
Rj Xj,n

j +Tj
)
z
, (8)

where (·)z denotes the third (depth) component. Denote the
corresponding mono-depth pseudo ground-truth by zj,nmono.
After solving for an optimal scaling factor α∗ to align the
two depth maps, the scale-invariant mono-depth loss is de-
fined as

Ldepth =
1

N

N∑
n=1

(
α∗ zj,nproj−zj,nmono

)2

, α∗ =

∑
i z

j,n
proj z

j,n
mono∑

i

(
zj,nproj

)2 .

(9)

3D Self-Consistency. Beyond the 2D reprojection losses,
we introduce a 3D self-consistency term that aligns the
tracking pointmap X1

j with the reconstruction pointmap
Xj

j . Let I ′
1 be the set of points in frame 1 that remain

visible in frame j, and for each point n ∈ I ′
1, denote its

corresponding point (provided by CoTracker) in frame j by
n′. We then penalize the distance between their predicted
3D positions:

Lalign =
∑
n∈I′

1

∥∥X1,n
j −Xj,n′

j

∥∥2. (10)

Minimizing Lalign ensures that both branches produce con-
sistent geometry in the same timestamp.

The overall self-supervision loss is given by:

Lreproj = Ltraj + λ1 Ldepth + λ2 Lalign, (11)

with λ1 and λ2 being the weighting factors. Minimizing
Lreproj aligns the projected 3D structure with the 2D track-
ing and monocular depth cues and their 3D self-consistency,
enabling unsupervised, target-specific refinement of the 3D
geometry and point tracking.

Test-Time Adaptation. To address the gap between syn-
thetic pretraining and real-world data, we incorporate
reprojection-based losses to enable test-time adaptation
in St4RTrack. Our framework supports two adaptation
paradigms: (1) Instance-level adaptation. During test-
ing, we update St4RTrack on new sequences using only
the aforementioned reprojected losses while freezing the
reconstruction branch. We freeze these weights because
both the 2D trajectories and depth are computed under a
purely monocular setting, which does not provide view-
alignment supervision. This approach preserves the view-
alignment capability captured during pretraining. More-
over, since the pretrained network already encodes strong
task-relevant representations, this sequence-specific opti-
mization converges rapidly compared to test-time optimiza-
tion methods that start from scratch. (2) Domain-level
adaptation. Unlike tabula-rasa approaches such as [27, 57],
which require full re-optimization for each new sequence,
St4RTrack is an end-to-end learning framework that enables
test-time adaptation to align the model from its pretraining
data distribution to the target video domain. After adapting
to a sparse set of target-domain samples, St4RTrack can di-
rectly perform simultaneous reconstruction and tracking on
new sequences from the adapted domain without additional
optimization.

4. Experiments
St4RTrack performs both dense 3D point tracking and dy-
namic reconstruction in a unified world coordinate system,
all within a single inference. In the following section, we
first evaluate our method on 3D tracking and dynamic re-
construction separately, and then present the joint results.
We also introduce a new benchmark, WorldTrack, for 3D
tracking in world coordinates, which is not directly covered
by previous methods.

4.1. Experimental Details
Datasets. For fully supervised training, we use three syn-
thetic datasets: Point Odyssey (PO) [69], Dynamic Replica
(DR) [22], and Kubric [15]. All three datasets contain scene
and camera motion and provide mesh vertex positions as
ground-truth 3D point trajectories. We randomly sample
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Table 1. World Coordinate 3D Point Tracking. We report the performance of average points under distance (APD3D) after global median
alignment. We evaluate the accuracy of both all points and dynamic points. The best results are bold. See Appendix B.2 for more results.

All Points Dynamic Points

Category Methods PO DR ADT PStudio PO DR ADT PStudio

Combinational SpaTracker+RANSAC-Procrustes 44.03 55.01 50.87 52.05 53.77 58.58 66.49 52.05
SpaTracker+MonST3R 47.65 55.49 51.95 50.16 58.61 59.21 69.94 50.16

Feed-forward
MonST3R 33.47 58.06 74.35 51.32 39.36 51.86 67.92 51.32
SpaTracker 38.54 54.85 45.65 62.59 51.20 58.65 67.65 62.59

St4RTrack (Ours) 67.95 73.74 76.01 69.67 68.72 68.13 75.34 69.67

Table 2. World Coordinate 3D Reconstruction. We report per-
formance on both Point Odyssey (PO) and TUM-Dynamics after
global median scaling. The best results are in bold.

Point Odyssey TUM-Dynamics

Category Methods EPE↓ APD↑ EPE↓ APD↑

w/ Global Align.
DUSt3R+GA 0.6088 43.90 0.3147 70.49
MASt3R+GA 0.4030 60.44 0.5186 68.38
MonST3R+GA 0.2629 72.31 0.3429 63.87

Feed-forward

DUSt3R 0.6386 45.79 0.2891 72.26
MASt3R 0.4644 56.90 0.5510 66.22
MonST3R 0.3044 68.25 0.3646 61.38

St4RTrack (Ours) 0.2406 78.73 0.1854 83.42

24 frames with a stride of 1∼6 for each sample sequence.
We also filter out less semantically meaningful sequences in
PO, resulting in a total of 9.8k sequences for PO, 8.5k for
DR, and 5.7k for Kubric dataset.

Training and Inference. During training, we sample 600
sequences from each dataset per epoch. We use the AdamW
optimizer with a learning rate of 5× 10−5 and a mini-batch
size of 1 per GPU. The model is trained for 50 epochs on
4 A100 GPUs, which takes about one day. For test-time
adaptation, we run 500 optimization steps on a single se-
quence, taking approximately 5 minutes on 4 A100 GPUs.
At inference time, the model runs at 30 FPS on an RTX
4090. Although the model is trained on sequences of 24
frames, our pair-wise approach allows it to operate on arbi-
trarily long videos during inference. Refer to Appendix C
for more details regarding test-time adaptation.

4.2. 3D Tracking in World Coordinates
Datasets. 3D tracking in world coordinates is a criti-
cal aspect that has been largely overlooked by previous
benchmarks [26], which are limited to camera coordinate
systems. To address this limitation, we propose a new
benchmark for 3D tracking in world coordinates. Our
benchmark leverages two real-world datasets—Aerial Digi-
tal Twin (ADT) [40] and Panoptic Studio [21]—by convert-

ing the TAPVid-3D [26] sequences to world coordinates us-
ing paired extrinsic parameters. However, it is noteworthy
that the limitations of these datasets: the ADT sequences
exhibit minimal scene motion, while the Panoptic Studio
lacks camera motion. To overcome these shortcomings,
we include two additional synthetic test sets from Point
Odyssey and Dynamic Replica, which have both scene and
camera motion. In total, our benchmark comprises four
datasets, each containing 50 sequences of 64 frames. Re-
fer to Appendix B.1 for more details and visual examples of
the benchmark.

Evaluation Metrics. We follow the TAPVid-3D protocol
and use the Average percent of Points within Delta (APD)
metric for evaluation. Specifically, we first align the pre-
dicted 3D point trajectories with the ground truth by nor-
malizing them with their global median. We then com-
pute the prediction error and measure the percentage of
points whose error falls below a given threshold δ3D (with
δ3D ∈ {0.1m, 0.3m, 0.5m, 1.0m}) over the first 64 frames.
Let P̂i

t denote the i-th predicted point at time t and Pi
t de-

note its corresponding ground-truth location. The resulting
APD3D is then computed as follows:

APD3D ≡
∑
i,t

1
(
∥P̂i

t −Pi
t∥ < δ3D

)
, (12)

where 1(·) is the indicator function and ∥ · ∥ denotes the
Euclidean norm.

Baselines. Since no existing work explicitly performs 3D
tracking in world coordinates, for our feedforward base-
lines, we compare against the camera coordinate 3D track-
ing method SpatialTracker [64] and a dynamic 3D recon-
struction method MonST3R [67] (as a non-tracking base-
line). In addition, we implement two combinational base-
lines for world coordinate 3D tracking. The first baseline
applies Procrustes alignment [54] and RANSAC [11] to the
camera coordinate 3D tracks predicted by SpatialTracker to
offset the camera motion. The second baseline leverages
the camera poses predicted by the dynamic SLAM method
MonST3R to compensate for camera motion.
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Input Video Accumulated Reconstruction Accumulated TrackingPair Output

Figure 4. Qualitative Results. From left to right, we show our results in feed-forward inference: 1) the input video, 2) two pointmaps
at frame j overlayed together, 3) the accumulated reconstruction branch result, and 4) the accumulated tracking branch result. The ac-
cumulated reconstruction demonstrates a stable reconstruction of the dynamic scene geometry, while the accumulated tracking illustrates
long-term, dense tracking of scene motion. More qualitative results in Appendices B.3 and D.

Input Video Ours w/o TTA Ours
w/o Fine-Tuning 
(MASt3R + TTA)

Frame 1

Frame j
…

Figure 5. Ablation Study. We show the qualitative comparison of our full method and variants that do not pretrain or do not adapt in test
time. Predicted pointmaps from two heads are visualized together.

Results. As shown in Tab. 1, we achieve state-of-the-art
performance, with test-time adaptation proving particularly
beneficial for dynamic points. Notably, on the Panoptic
Studio dataset, which is captured with a fixed camera and
can be considered a fair benchmark for camera coordinate

tracking methods, our approach still outperforms Spatial-
Tracker [64]. It is worth noting that although our model
is trained on sequences of 24 frames, it generalizes well to
longer sequences, including 64-frame videos. Refer to Ap-
pendix B.2 for more results.
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4.3. Dynamic 3D Reconstruction
Datasets. We evaluate on both synthetic and real-world
data. For the synthetic data, we use Point Odyssey [69]. For
real-world evaluation, we employ TUM-Dynamics [49], a
subset of a SLAM dataset featuring moving people, dense
depth maps, and accurate camera poses.

Evaluation Metrics. Unlike prior works [58, 67] that sep-
arately evaluate video depth and camera pose estimation,
we directly compare the reconstructed 3D point clouds to
the ground truth using the Average percent of Points within
Distance (APD) and End-Point Error (EPE) metrics. We
filter out ambiguous floating points in the ground truth data
and align the point clouds for each sequence using the me-
dian scale before evaluation.

Baselines. We compare our method against MonST3R,
MASt3R and DUSt3R, both with global alignment (w/
GA) and in feedforward mode. For the feedforward base-
lines, we construct image pairs of a video in the form of
St4RTrack, that align all frames to a common anchor frame.

Results. As in Tab. 2, we also achieve state-of-the-art per-
formance on the task of 3D reconstruction in the world coor-
dinate. Although MonST3R is designed for 3D reconstruc-
tion for dynamic scenes, it still underperforms St4RTrack
even with global alignment. This further highlights the ben-
efit of jointly tracking and reconstruction. Since we freeze
the reconstruction head to preserve the 3D prior, 3D recon-
struction results are similar with test-time adaptation.

4.4. Joint Tracking and Reconstruction in the World
Our method simultaneously predicts 3D point trajectories
and 3D point clouds in a single feed-forward pass, which
we evaluate separately in previous sections. In this section,
we present qualitative results that visualize both the raw
3D point trajectories and 3D point clouds within the same
world coordinates, as shown in Fig. 4. The “pair output”
result demonstrates that the outputs from the tracking and
reconstruction branches align well at the same time step.
Additionally, the accumulated reconstruction indicates con-
sistency in static regions, while the accumulated tracking
shows that our method estimates accurate and smooth 3D
tracks over time.

4.5. Ablation Study
We perform an ablation study to evaluate two key design
choices of our method and present qualitative results in
Fig. 5. First, we assess the effectiveness of our pretrain-
ing stage by directly applying test-time adaptation to a pre-
trained checkpoint from MonST3R [67], without finetuning
the base model on our training datasets. As shown in Fig. 5
(column 2), the baseline exhibits unaligned pointmaps be-
tween the tracking and reconstruction branches, underscor-

ing the importance of pretraining on synthetic data—even
in the presence of a domain gap with real-world data.

Second, we evaluate the impact of our proposed test-
time adaptation. As demonstrated in Fig. 5 (column 3), the
adapted model successfully corrects drifting points, ensur-
ing that points consistently trace back to their original spa-
tial locations in the first frame. This finding supports our
analysis that small-scale training data alone is insufficient
for fine-grained prediction, particularly at the boundaries of
moving objects. In contrast, St4RTrack produces spatially
aligned pointmaps with significantly fewer drifting points.
The colorful tails in the visualization indicate the long-term
trajectories, while the accurately predicted geometry in dy-
namic regions results in a crisp and precise rendering.

Refer to Appendix C.2 for more ablation studies.

5. Discussion
Despite St4RTrack presents a promising step toward a uni-
fied understanding of dynamic scene geometry and motion
in a minimalist way, a challenge arises from the per-frame
setting. In particular, issues such as scale misalignment,
large camera movements, and occlusions are not fully re-
solved. Incorporating temporal attention across multiple
frames would help capture richer motion priors and alle-
viate these limitations. Another limitation arises from the
pretraining dataset’s limited diversity and realism in both
geometry and motion, necessitating test-time adaptation to
improve St4RTrack’s robustness in out-of-distribution sce-
narios. However, it still struggles with highly complex mo-
tions. Expanding the training set is therefore a key di-
rection for future work. We envision that large-scale pre-
training, when compute permits, could significantly boost
St4RTrack’s performance and enable it to better handle
complex, in-the-wild videos.

6. Conclusion
We introduce St4RTrack, a feed-forward framework that
simultaneously achieves 3D point tracking and dynamic
reconstruction in the world coordinate from monocular
videos using a unified representation. Alongside, we
present a novel benchmark, WorldTrack, for systematically
evaluating dynamic 3D scene geometry and motion esti-
mation in a global reference frame. Our method achieves
state-of-the-art performance on both synthetic and real-
world datasets, while also extending beyond fully super-
vised paradigms by enabling test-time adaptation.
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A. Differentiable Camera Pose Estimation
We seek to backpropagate the projection loss to the 3D
pointmaps through the camera pose. To this end, we
build upon the RANSAC-PnP approach from DUSt3R [61],
which initially solves for pose P∗ (rotation and translation)
by matching per-pixel 2D-3D correspondences in the recon-
struction pointmap Xj

j . However, RANSAC is inherently
non-differentiable.

To enable end-to-end gradients, we adopt the derivative-
based Gauss-Newton (GN) solver inspired by EPro-PnP [5].
Specifically, after obtaining a detached solution P∗ from
RANSAC-PnP, we refine it using one GN step:

∆P = −
(
J⊤J

)−1
J⊤ F (P∗), (13)

where F (P∗) = [ f⊤
1 (P∗), . . . , f⊤

N (P∗)]⊤ is the flattened
reprojection error for all N points, and J = ∂F (P)

∂P

∣∣
P=P∗

is its Jacobian. The term J⊤J approximates the Hessian of
the negative log-likelihood (NLL), while J⊤F (P∗) is the
gradient of the NLL with respect to the pose. This gradient
effectively pushes the incremental solution ∆P toward re-
ducing the reprojection errors. The final differentiable pose
estimate is:

P = P∗ + ∆P. (14)

Since P∗ is detached, only the GN increment ∆P remains
differentiable, allowing the reprojection loss to backpropa-
gate through P and thus refine the 3D pointmaps.

B. Details on the WorldTrack Benchmark
B.1. Datasets
Dataset Preparation. For the two real-world datasets, we
adopt the 3D camera coordinate tracking annotation of ADT
and Panoptic Studio from the TAPVID-3D dataset. Using
the paired camera parameters provided, we transform the
camera coordinates to the world coordinate system. For
the two synthetic datasets, we use the test sets from Point
Odyssey and Dynamic Replica Dataset. We uniformly
downsample the query points to approximately 1,000 per
sequence. Each sequence contains 128 sampled frames,
though only the first 64 frames are used for evaluation. This
results in 160 and 140 sequences from Point Odyssey and
Dynamic Replica, respectively. From these, we randomly
sample 50 sequences per dataset for evaluation.

Filtering Criteria. To ensure data quality, we apply sev-
eral filtering strategies: For TUM, we keep the pixels which
associated with depth values within 0.1 - 5 meters, as the
depth camera is less accurate at long range. For Point
Odyssey, we exclude sequences generated in the Kubric
style [15] due to their lack of realism. We also remove
scenes with ambiguous depth (e.g., heavy foggy condi-
tions), and any frames where the camera intrinsics are dy-
namic.

B.2. Additional Quantitative Evaluation
Following TAPVid-3D [26], we adopt global median scale
alignment, since both our predictions and the ground truth
use the first frame’s camera coordinate system as the world
coordinate. The Average Percent of Points within Distance
(APD3D) measures the overall accuracy of the 3D trajec-
tories in world coordinates, while Euclidean endpoint er-
ror (EPE) offers a complementary perspective on localiza-
tion accuracy. Accordingly, we additionally report EPE re-
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Table 3. World Coordinate 3D Point Tracking (EPE - Global Median) . We report end-point error (EPE; lower is better) for both all
points and dynamic points after global median alignment. The best (lowest) values are in bold.

All Points Dynamic Points

Category Methods PO DS ADT PStudio PO DS ADT PStudio

Combinational
SpaTracker+RANSAC-Procrustes 0.6408 0.9185 0.5876 0.4266 0.4358 1.0444 0.1600 0.4266
SpaTracker+MonST3R 0.5917 0.8823 0.5362 0.4837 0.4085 0.9136 0.1511 0.4837

Feed-forward
MonST3R 0.9021 0.4387 0.2721 0.4568 0.6452 0.5313 0.1578 0.4568
SpaTracker 0.7499 0.9274 0.8530 0.3094 0.4695 1.0828 0.1628 0.3094

St4RTrack (Ours) 0.3140 0.2682 0.2680 0.2637 0.2970 0.2961 0.1212 0.2637

Table 4. World Coordinate 3D Point Tracking (APD/EPE - SIM(3)). Each cell shows APT3D (higher is better) / EPE (lower is better)
after global IM(3) alignment. The best APT (highest) and the best EPE (lowest) in every column are bold.

All Points Dynamic Points

Category Methods PO DR ADT PStudio PO DR ADT PStudio

Combinational
SpaTracker+Procrustes 46.20/0.5670 55.10/0.5292 59.40/0.4027 67.82/0.2660 61.00/0.3338 61.65/0.3720 88.65/0.0596 67.82/0.2660

SpaTracker+MonST3R 48.23/0.5388 56.78/0.5069 60.01/0.3910 64.32/0.2971 61.78/0.3290 61.88/0.3681 87.32/0.0485 64.32/0.2971

Feed-forward

MonST3R 37.62/0.8073 64.83/0.3725 79.48/0.1881 64.11/0.3015 48.95/0.4768 55.36/0.3872 84.73/0.0720 64.11/0.3015

SpaTracker 43.17/0.6079 54.65/0.5324 53.96/0.4963 80.76/0.1650 60.49/0.3374 61.32/0.3750 87.68/0.0616 80.76/0.1650

St4RTrack (Ours) 71.84/0.2774 76.28/0.2436 83.03/0.1631 76.97/0.1969 67.43/0.2870 67.90/0.2627 85.34/0.0688 76.97/0.1969

Table 5. World Coordinate 3D Reconstruction (APD/EPE -
SIM(3)). Results on Point Odyssey (PO) and TUM-Dynamics af-
ter global SIM(3) alignment. Lower is better for EPE, higher is
better for APT. The best results are in bold.

Point Odyssey TUM-Dynamics

Category Methods EPE↓ APT↑ EPE↓ APT↑

w/ Global Align.
DUSt3R+GA 0.3541 62.42 0.2989 69.23
MASt3R+GA 0.3717 61.31 0.5294 49.81
MonST3R+GA 0.2601 69.31 0.3173 66.00

Feed-forward

DUSt3R 0.4251 56.70 0.3092 67.48
MASt3R 0.4473 55.09 0.5862 45.43
MonST3R 0.3462 62.10 0.3508 62.83
St4RTrack 0.2741 69.53 0.2413 74.14

sults on the WorldTrack benchmark. As shown in Table 3,
St4RTrack attains state-of-the-art EPE on all sub-test sets,
consistent with the APD3D results in the main paper.

Beyond alignment to the first camera’s pose, we also
evaluate under SIM(3) alignment (i.e., SE(3) plus a global
scale factor) for both APD3D and EPE to assess performance
of 3D tracking (See Tab. 4) and reconstruction (See Tab. 5)
under a more flexible registration. Comprehensive evalua-
tions show that St4RTrack achieves state-of-the-art perfor-

mance in most scenarios.

B.3. Qualitative Evaluation
We present the qualitative results of our fully feed-forward
approach on WorldTrack benchmark. Specifically, we show
the reconstruction results in Fig. 6 (TUM-Dynamics) and
Fig. 7 (Point Odyssey). We show the tracking results of all
four datasets in Fig. 8.

C. Details on Test-Time Adaptation

C.1. Implementation Details
We set the weights of different loss factors in Eq. (11) to
λtraj = 1, λdepth = 10, and λalign = 5. For WorldTrack eval-
uation, the two test-time adaptations are set up as follows:
Sequence-Level (Instance) Adaptation: Fine-tune a sep-
arate model for each of the 50 sequences. We sample 300
frames per epoch, train for 3 epochs, and use a batch size of
4. Dataset-Level (Domain) Adaptation: Fine-tune a sin-
gle model on the entire dataset. We sample 100 frames per
epoch, train for 15 epochs, and use a batch size of 4.

C.2. Ablation Studies
We ablate (1) the performance gain from the feed-forward
St4RTrack, instance-level adaptation, and domain-level
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Input Frames GT Pointmaps Predicted Pointmaps Aligned Result

Input frames GT pointmaps Pred. pointmaps Aligned result

Figure 6. Reconstruction Results of St4RTrack on TUM-Dynamics Dataset. From left to right, we show 1) the sampled frames from
the input sequence of 64 frames, 2) the subsampled ground truth pointmaps, 3) the predicted pointmaps of our method, and 4) the aligned
results of the predicted and GT pointmaps with median-scale. Note that the reconstruction result is inferred in a feed-forward way.

Table 6. World Coordinate 3D Tracking (Median-Scale).
End-point error (EPE ↓) and APT3D ↑ for DR and PStudio after
global median scaling. Best (lowest EPE / highest APT3D) in each
column is shown in bold.

DR PStudio

Methods EPE↓ APT↑ EPE↓ APT↑

Spatialtracker+Procrustes-RANSAC 0.9185 55.01 0.4266 52.05
St4RTrack 0.2682 73.74 0.2637 69.67
St4RTrack + TTA (per-sequence) 0.2472 76.07 0.2243 73.71
St4RTrack + TTA (per-dataset) 0.2547 74.86 0.2280 73.30

w/o trajectory loss 0.2767 72.75 0.2421 72.50
w/o depth loss 0.5524 48.22 0.2975 66.50
w/o alignment loss 0.3263 66.65 0.3357 60.07
w/o pre-training 0.3377 65.50 0.3801 57.71

adaptation, and (2) the contribution of each TTA compo-
nent by omitting individual elements. Table 6 summa-
rizes our findings. First, both TTA variants yield sub-

stantial improvements over the feed-forward mode, with
instance-level adaptation achieving the highest accuracy, as
it fully specializes to each test sequence. Second, remov-
ing any single TTA component—trajectory loss, depth loss,
alignment loss, or synthetic pretraining—causes a perfor-
mance drop in all scenarios, underscoring the necessity of
each component.

D. Additional Results
Below, we present additional qualitative results for both
feed-forward inference (Fig. 9) and test-time adaptation
(Fig. 10).
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Input Frames GT Pointmaps Predicted Pointmaps Aligned Result

Figure 7. Reconstruction Results of St4RTrack on Point Odyssey Dataset. From left to right, we show 1) the sampled frames from
the input sequence of 64 frames, 2) the subsampled ground truth pointmaps, 3) the predicted pointmaps of our method, and 4) the aligned
results of the predicted and GT (yellow) pointmaps with median-scale. Note that the reconstruction result is inferred in a feed-forward way.

Pred. & GT tracks (Visualized in 2D/3D) Pred. & GT tracks (Visualized in 2D/3D)

Figure 8. Tracking Results of St4RTrack on WorldTrack Benchmark. We show the 2D and 3D visualized results of the predicted
tracks (visualized as “+”) aligned with the ground truth tracks (visualized as “•”). The corresponding datasets are Point Odyssey (top left),
Dynamic Replica (top right), Arial Digital Twin (bottom left), and Pnapotic Studio (bottom right).
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Input Video Pair Output Accumulated Reconstruction Accumulated Tracking

Figure 9. Fully Feed-Forward Inference Results of St4RTrack. We show from left to right: 1) the input video, 2) the pairwise output for
tracking (in blue) and reconstruction (in yellow) of the same frame, 3) the accumulated results of the reconstruction pointmaps, and 4) the
accumulated results of the tracking pointmaps. Note that we anchor the middle frame as the reference frame for point tracking.

Input Video Pair Output Accumulated Reconstruction Accumulated Tracking

Figure 10. Test-Time Adaptation Results of St4RTrack. The first frame is set to be the reference frame.

17


	Introduction
	Related Works
	Simultaneous Reconstruction and Tracking
	Unified 4D Representation of St4RTrack
	Joint Learning of Tracking and Reconstruction
	Adapt to Any Video without 4D Label

	Experiments
	Experimental Details
	3D Tracking in World Coordinates
	Dynamic 3D Reconstruction
	Joint Tracking and Reconstruction in the World
	Ablation Study

	Discussion
	Conclusion
	Acknowledgements
	Differentiable Camera Pose Estimation
	Details on the WorldTrack Benchmark
	Datasets
	Additional Quantitative Evaluation
	Qualitative Evaluation

	Details on Test-Time Adaptation
	Implementation Details
	Ablation Studies

	Additional Results

